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The problem of the motion of a free particle in a uniform gravitational field is 
considered. A relativistic solution based on the assumption that the motion is a 
consequence of the curvature of spacetime is obtained. The results are compared 
with various results based on the assumption that spacetime is flat in a region 
in which the gravitational field is uniform. In the curved spacetime approach, 
if a particle is projected from a point in a uniform gravitational field, the vertical 
distance covered by the particle in infinite coordinate time is infinite, but the 
horizontal distance covered and the elapsed proper time of the particle are finite~ 
If spacetime is assumed to be fiat and the gravitational motion of a particle a 
consequence of a relativistic force proportional to the relative mass of the particle, 
then the results obtained for the motion of a particle in a uniform gravitational 
field are close to the curved spacetime results. All other assumptions, including 
the assumption that the motion of a particle in a uniform gravitational field is 
equivalent to the motion of a particle in a uniformly accelerating frame of 
reference, lead to results in serious disagreement with the curved spacetime 
results. 

1. I N T R O D U C T I O N  

D e s p i t e  t he  s ign i f i cance  a n d  e l e m e n t a r y  n a t u r e  o f  t he  p r o b l e m  o f  the  

m o t i o n  o f  a f ree  pa r t i c l e  in a u n i f o r m  g r a v i t a t i o n a l  field,  I a m  u n a w a r e  o f  

a r i g o r o u s  a n d  exac t  ana lys i s  o f  this  p r o b l e m  in t he  l i t e ra ture .  E q u a l l y  

p u z z l i n g  is t he  r e l a t ed  fac t  tha t  the re  is n o  a g r e e m e n t  in t he  l i t e r a tu re  as to  

w h e t h e r  s p a c e t i m e  is o r  is n o t  fiat in a u n i f o r m  g r a v i t a t i o n a l  field. T h o s e  

a u t h o r s  w h o  h o l d  tha t  i t  is flat base  t he i r  b e l i e f  e i t he r  o n  the  s u p p o s e d  
e q u i v a l e n c e  b e t w e e n  o b s e r v a t i o n s  in a f r a m e  at rest  in a u n i f o r m  grav i t a -  

t i ona l  f ield a n d  o b s e r v a t i o n s  in a f r a m e  u n i f o r m l y  a c c e l e r a t i n g  in f i e ld - f ree  

space  [see ,  fo r  e x a m p l e ,  T o l m a n  (1934, pp .  174-175)  a n d  R o h r l i c h  (1963, 
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Section III)], or on the apparent absence of a tidal acceleration in a uniform 
gravitational field [see, for example, Bondi (1986, Section 1.3) and Ohanian 
(1976, footnote, p. 40)]. Although it is surprisingly difficult to find authors 
who explicitly deny that spacetime is fiat in a uniform gravitational field, 
it is apparent that this position is held by many either from their attitude 
toward the equivalence principle [see, for example, Synge (1960, pp. ix-x) 
and Fock (1964, pp. 228-233)] or from the fact that they derive and use 
general expressions for the spacetime interval in an arbitrary gravitational 
field which when applied to a uniform gravitational field would clearly lead 
to a nonvanishing curvature tensor [see, for example, Rindler (1979, pp. 
117-120) and Macdonald et al. (1986, Sections A and B)]. 

Notwithstanding the present ambivalence and ambiguity in the 
literature, it is possible to demonstrate quite simply that spacetime must be 
curved in a uniform gravitational field, and to pinpoint the fallacies in the 
arguments of those who contend that it is fiat [see, for example, Desloge 
(1989)]. In the present article, the relativistic motion of a free particle in a 
uniform gravitational field is analyzed from a variety of points of view, with 
the intention of reinforcing the preceding thesis, and filling the theoretical 
gap mentioned at the beginning of this section. 

2. DEFINITIONS 

In the following sections I employ a number of terms which are used 
in different senses by different authors. Hence in this section definitions are 
provided of a number of key terms used in this paper. 

An observer is a hypothetical infinitesimal nonrotating intelligent being 
equipped with a set of standard instruments with which local measurements 
of proper length, proper time, and proper acceleration can be made. 

A reference frame is a spatially continuous ensemble of observers 
moving in some specified manner. 

A coordinate system for a given reference frame is a particular numerical 
designation of the observers in the frame, and the points on the world lines 
of the observers. 

A rigid reference frame is a reference frame in which the interrelation- 
ships between the observers making up the frame, as determined by the 
observers themselves, remain unchanged. In particular, if A and B are any 
two observers in the frame, the time as noted by A, using A's clock, for a 
light signal to go from A to B and back to A again will remain fixed. 

A rigid nonrotating reference frame is a rigid reference frame in which 
the time it takes a light signal to traverse any closed path, as noted by an 
observer on the path, is independent of the direction of the signal. 
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3. BASIC ASSUMPTIONS 

I assume that in a uniform gravitational field it is possible to set up a 
rigid nonrotating reference frame in which the spatial geometry, based on 
the rod distance between points in the frame, is Euclidean. 

I further assume that the frame is coordinatized as follows: (i) One 
observer O, called the reference observer, is singled out and assigned the 
spatial coordinates (x, y, z ) =  (0, 0, 0). (ii) Each of  :he other observers in 
the frame is assigned coordinates (x, y, z) such ~ lat the square of the rod 
distance between the observer at (x, y, z) and the observer at ( x +  dx, y +  
dy, z + dz) has the value dx2+ @2+ dz 2. (iii) Time values t are assigned to 
the points on the world line of  the reference observer using that observer's 
standard clock. (iv) Each of the other observers in the frame is equipped, 
in addition to his standard clock, with an auxiliary clock which I shall refer 
to as a coordinate clock, whose rate is determined by the rate of arrival of 
signals sent at unit time intervals by the reference observer. (v) The coordin- 
ate clock of each observer P is synchronized with the clock of the reference 
observer O in such a way that a signal OPO which originates at O at time 
tl and terminates at O at time t2 will be reflected at P at time ( t l+  t2)/2, 
where the latter time is measured with the coordinate clock at P. (vi) The 
coordinate clock of each observer P is used to assign time values t to points 
on that observer's world line. 

The above assumptions do not uniquely determine either the nature 
of the frame or an expression for the interval between neighboring events. 
Additional assumptions will be made later which together with the above 
assumptions uniquely define both of these quantities. 

4. SIMPLIFICATIONS 

4.1. Restriction to Two Spat ia l  Dimens ions  

The trajectory of a free particle in a uniform gravitational field lies in 
a vertical plane. I assume the plane to be the x - y  plane and the positive y 
axis to be directed vertically up. To expedite analysis, in the remainder of 
the paper I simply assume that space is two dimensional. The extension of 
the results to three dimensions is straightforward. 

4.2. Initial  Condit ions 

If the world line of a particle, projected from a point with an initial 
velocity and allowed to move freely for some period of time in a uniform 
gravitational field, is extended backward and forward in time, there will be 
an event (x, y, t) at which the height of the particle has a maximum value. 
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To simplify results, I assume that the frame has been so coordinatized that 
the coordinates of  this event are (x, y, t) -- (0, 0, 0). It follows that at t -- 0 
the particle is located at the point (x, y ) =  (0, 0) and is moving in the x 
direction with some known velocity Vo. By translating the spacetime origin 
and varying the value of  Vo, the results obtained for the above conditions 
can be used to obtain the results for any initial conditions. 

Given the above conditions, if we know how the particle moves from 
t-= 0 to t = oo, we can determine from symmetry how the particle moves 
from t = - co  to t = 0. Hence in the following analysis I assume for simplicity 
that the time t ranges from 0 to a3. 

4.3. Units 

To simplify mathematical  expressions, I shall work in a system of  units 
in which m = c = g  = 1, where m is the proper  mass of  the particle, c is the 
speed of  light, and g is the magnitude of the initial acceleration of  a particle 
released from rest at the origin. Using such units is equivalent to writing 
all equations in terms of  dimensionless quantities without specifically 
introducing new variables to designate the resulting quantities. At any stage 
in the development  the equations can be written in dimensionless form or 
equivalently in terms of  arbitrary units by dividing each quantity appearing 
in the expression by whatever combination of the quantities m, c, and g 
will make it dimensionless. In particular, mass quantities are divided by m, 
length quantities by c2/g ,  and time quantities by c /g .  

5. T H E  S P A C E T I M E  INTERVAL 

The results in this section represent a s imple  extension of results 
obtained elsewhere [see, for example,  Desloge (1989)]; hence in the sub- 
sequent subsections I simply state results with little or no proof. 

5.1. General Form of the Spacetime Interval 

If, in a uniform gravitational field, we set up and coordinatize a 
reference frame as described above, and assume that the initial acceleration 
of a particle released from rest, as measured by the observer at the point 
at which the particle is released, is in the yl direction, then it can be shown 
that the square of  the spacetime interval between neighboring events will 
be of  the form 

ds 2 = - d x  2 -  dy2 + a2(y) dt 2 (1) 

where 

ce (0) = 1 (2) 
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The quantity a (y) can be shown to be equal to the ratio of  the standard 
clock rate to the coordinate clock rate at height y, and the quantity ( l / a )  
da/dy can be shown to be equal to the proper  acceleration of an observer 
at height y. 

5.2. Flat Spacet ime Interval 

I f  we assume that spacetime is flat, then it can be shown that the 
function a ( y )  must be of  the form 

c~ = l + a y  (3) 

where a is an arbitrary constant. 
I f  a = 0, the resulting frame is an inertial frame. I f  a ~ 0, then the 

resulting frame i s  an uniformly accelerating frame in which the proper  
acceleration of  the observer at height y is in the positive y direction and 
of  magnitude a/(1 + ay). Note that in a uniformly accelerating reference 
frame, the observers making up the frame do not have the same proper  
accelerations. 

5.3. Curved Spacet ime Interval 

I f  we do not restrict ourselves to flat spacetime and assume that each 
of  the observers in the reference frame introduced in Section 3 has the same 
proper  acceleration a, then the function a(y) is given by 

a = e ay (4) ~ 

The expression for the interval between neighboring events which is 
obtained when equation (4) is substituted in equation (1) is that of  a curved 
spacetime. 

6. THE M O T I O N  OF A PARTICLE IN A U N I F O R M  
GRAVITATIONAL FIELD 

In this section, I consider the motion of a particle in a uniform 
gravitational field from five different points of  view based on five different 
assumptions concerning the nature of  a uniform gravitational field. The first 
point of  view assumes the motion is governed by Newton's  equations of  
motion (Assumption N). The second and third points of  view assume the 
motion is governed by the equations of  motion of special relativity (Assump- 

t ions  SR1 and SR2). In SR1 the force is assumed to be proport ional  to the 
proper  mass of  the particle, and in SR2 the force is assumed to be propor-  
tional to the relative mass of  the particle. The fourth point of  view assumes 
that the motion is equivalent to motion in a uniformly accelerating frame 
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of  reference, an assumption which is generally referred to as Einstein's 
equivalence principle (Assumption EP). The fifth point of view assumes, 
according to the principles of  general relativity, that the motion is a con- 
sequence of  the curvature of  spacetime (Assumption GR). 

6.1. Assumption N 

If  we assume (i) space and time are absolute, (ii) motion is governed 
by Newton's equations of  motion, and (iii) the motion of  a particle in a 
uniform gravitational field is a consequence of the action of  a constant 
force proportional  to the mass of the particle, then the motion of the particle, 
with the various simplifying assumptions made in Section 4, is governed 
by the equations 

Y--O (5) 

= -1  (6) 

Solving these equations subject to the initial conditions ~(0) = Vo and 
x(O) = y(O) = ~(0) = 0 gives 

x = Vot (7) 

y = - t z / 2  (8) 

where t ranges from 0 to oo, x ranges from 0 to oo, and y ranges from 
0 to -oo. 

6.2. Assumption SR1 

If we assume (i) spacetime is flat, (ii) motion is governed by the 
equations of  motion of  special relativity, and (iii) the motion of a particle 
in a uniform gravitational field is a consequence of  the action of  a force 
proportional to the proper  mass of  the particle, then the equations governing 
the motion of  the particle are 

d 
d t  (y~) = 0 (9) 

d 
d-~ (~,~) = -1  (10) 

where 

y-= (1-~2-3~2) - ' /2 (11) 
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Solving these equations subject to the initial conditions ~(0) = Vo and 
x(O) = y(O) = ) (0)  = 0 gives 

x = yoVo s inh - l ( t / yo )  (12) 

y = yo{1 - [ 1  +(t /yo)2]  1/2} (13) 

where 

Yo-= (1 - v2) -'/2 (14) 

t ranges from 0 to a3, x ranges from 0 to oo, and y ranges from 0 to -oo. 

6.3. Assumption SR2 

I f  we assume (i) spacetime is flat, (ii) motion is governed by the 
equations of  motion of special relativity, and (iii) the motion of a particle 
in a uniform gravitational field is a consequence of the action of a force 
proport ional  to the relative mass of  the particle, then the equations governing 
the motion of  the particle are 

d 
~-~ (y~) = 0  (15) 

d 
~-~ (y~)) = - y  (16) 

where 

y-= (1 _ ~2_ )2)- , /2 (17) 

Solving these equations subject to the initial conditions ~(0) = Vo and 
x(0) = y(0) = ~(0) = 0 gives 

x = votan -1 sinh t (18) 

y = - l n  cosh t (19) 

where t ranges from 0 to co, x ranges from 0 to 7rvo/2, and y ranges from 
0 to -oo. Note the limit on the range of  x. 

6.4. Assumption EP 

I f  we assume (i) spacetime is flat in a region in which the gravitational 
field is uniform, and (ii) the motion of a free particle in a uniform gravita- 
tional field is equivalent to the motion of  a particle in a uniformly 
accelerating reference frame, then the motion can be determined by finding 
in the accelerating frame the spacetime geodesic satisfying the given initial 
conditions. 
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The spacetime interval in a uniformly accelerating frame in which the 
proper  acceleration of  the observer located at the origin is of  unit magnitude 
and directed in the positive y direction is given by the expression 

d s  2 = - d x  2 -  dy2 + (1 +y)2  d t  2 (20) 

Using equation (20) to obtain geodesic equations and identifying these 
with the equations of  motion of a free particle gives for the equations of  
motion 

d 

d t  = - i + y  

Solving these equations subject to the initial conditions 2(0) = v0 and 
x(0) = y(0) = ~(0) = 0 gives 

x = Vo tanh t (23) 

y =sech  t - 1 (24) 

where t ranges from 0 to oo, x ranges from 0 to Vo, and y ranges from 0 to 
- 1. Note the limit on the range of  x and the existence of a horizon at y -- - 1. 

6.5 .  A s s u m p t i o n  G R  

I f  we assume in a uniform gravitational field (i) spacetime is curved, 
(ii) the motion of  a particle is a consequence of  the curvature of  spacetime, 
and (iii) it is possible to set up a rigid frame in which (a) the spatial geometry 
based on the rod distance between points is Euclidean and (b) the initial 
acceleration of  a particle released from rest as measured by the observer 
at the point at which the particle is released is independent of  the point in 
space or time at which the particle is released, then the motion can be 
determined by finding in the above frame the spacetime geodesic satisfying 
the initial conditions. 

From assumption (iiib) it follows that all of  the observers in the above 
frame have the same proper  acceleration. I f  we coordinatize the frame as 
described earlier and assume that the proper  acceleration of  an observer 
is of  unit magnitude and directed in the positive y direction, then the 
expression for the square of  the interval is 

d s  2 = - d x  2 - dy2  + e 2y d t  2 (25) 
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Using equation (25) to obtain geodesic equations and identifying these 
with the equations of motion of a free particle gives for the equations of 
motion 

d . 2 y  
~-~ (x e- ) = 0 (26) 

d 2y 
(3~ e- ) = -1  (27) 

subject to the initial conditions ~(0) = Vo and Solving these equations 
x(0) = y(0) = )~(0) = 0 gives 

x = Vo tan -1 t (28) 

y = -�89 ln(1 + t 2) (29) 

where t ranges from 0 to oc, x ranges 0 to 7rvo/2, and y ranges from 0 
to -oo. Note the limit on the range of x. 

7. TRAJECTORY OF A PARTICLE IN A UNIFORM 
GRAVITATIONAL FIELD 

The equation y = y(x) for the trajectory of a particle can be obtained 
by eliminating t from the pair of equations x = x(t) and y = y(t) describing 
the world line of the particle. I f  we do this in each of the cases considered 
in the preceding section, we obtain the following results: 

Assumption N: y =-�89 2 (30) 

Assumption SRI: y = yo[1 -cosh(x/yoVo)] (31) 

Assumption SR2: y = In cos(x/Vo) (32) 

Assumption EP: y = [1 - (X/Vo)2] 1/2-1 (33) 

Assumption GR: y = In  cos(x/vo) (34) 

where x ranges from 0 to ee in cases N and SR1, from 0 to Vo in case EP, 
and from 0 to 7rvo/2 in cases SR2 and GR; and y ranges from 0 to -oo in 
cases N, SR1, SR2, and GR, and from 0 to -1  in case EP. 

Trajectories for the special case Vo=3/5 are shown graphically in 
Figure 1. 

8. M O T I O N  OF A P H O T O N  IN A UNIFORM 
GRAVITATIONAL FIELD 

The motion of a photon in a uniform gravitational field can be deter- 
mined by considering the results obtained in Sections 6 and 7 in the limit 
as Vo approaches 1 and 1/yo approaches 0. 
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Fig. I. The trajectory of a particle projected 
from the origin with a horizontal velocity 
vo=3/5 as determined using assumptions 
N, SR1, SR2, EP, and GR, respectively. 
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Fig. 2. The trajectory of a photon projected 
from the origin in the horizontal direction as 
determined using assumptions N, SR1, SR2, 
EP, and GR, respectively. 
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Considering in particular the trajectory equations in Section 7 in the 
above limit, we obtain the following results: 

Assumption N: y = - x 2 / 2  (35) 

Assumption SR1 : y = 0 (36) 

Assumption SR2: y --- In cos x (37) 

Assumption EP: y = (1 - x 2) 1/2 _ 1 (38) 

Assumption GR: y = In cos x (39) 

where x ranges from 0 to co in cases N and SR1, from 0 to 1 in case EP, 
and from 0 to zr/2 in cases SR2 and GR; and y ranges from 0 to -co  in 
cases N, SR2, and GR, from 0 to -1  in case EP, and remains 0 in case SR1. 

The above trajectories are shown graphically in Figure 2. 

9.  P A S S A G E  O F  P A R T I C L E  P R O P E R  T I M E  

In analyzing the motion of a particle moving freely in a uniform 
gravitational field, it is interesting to consider the problem from the view- 
point of  the particle, rather than from the viewpoint of the observers making 
up the rigid reference frame introduced above. As a first step, it is interesting 
to compare the passage of  time on a clock carried by the particle with the 
passage of  coordinate time. To carry out this comparison, let us assume the 
falling particle is equipped with a standard clock, r is the time reading on 
this clock, and the clock has been set so that r = 0  at time t = 0 .  The 
determination of the relationship between the time r and the time t associ- 
ated with each of the fundamental assumptions considered above is straight- 
forward, hence I simply state the results below: 

Assumption N: r = t (40) 

Assumption SRI: r = s inh-l( t /yo)  (41) 

Assumption SR2: r = ( l /y0) sin -~ tanh t (42) 

Assumption EP: r =  (1/yo) tanh t (43) 

Assumption GR: z = (1/yo) tan -1 t (44) 

where t ranges from 0 to co in 
N and SR1, from 0 to 1~To in 
and GR. 

all cases; and z ranges from 0 to oo in cases 
case EP, and from 0 to ~-/2yo in cases SR2 
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10. M O T I O N  OF A PARTICLE IN TERMS OF ITS 
P R O P E R  TIME 

Given the relationship between the proper  time r of  the particle and 
the coordinate time t and knowing x ( t )  and y( t ) ,  we can determine x(z)  
and y(z) ,  that is, we can determine the motion of the particle from the 
viewpoint of  the particle. Doing this in each of  the cases considered above 
gives the following results: 

Assumption N: x = Vo~', y = - r 2 / 2  (45) 

Assumption SRI: x = yoVor, y = yo(1 - c o s h  r) (46) 

Assumption SR2: 

Assumption EP: 

x = yoVor, y = In cos(Tot) (47) 

x = yoVo% y = [1  - (yoZ) 2] , / 2 _  1 (48) 

Assumption GR: x = yoVo~ y = In cos(yoZ) (49) 

where r ranges from 0 to oo in cases N and SR1, from 0 to 1/3o in case 
EP, and from 0 to ~r/2yo in cases SR2 and GR; x ranges from 0 to oo in 
cases N and SR1, from 0 to Vo in case EP, and from 0 to ~rVo/2 in cases 
SR2 and GR; and y ranges from 0 to - ~  in cases N, SR1, SR2, and GR, 
and from 0 to - 1  in case EP. Note particularly that (i) there is a limit on 
the range of  x in cases SR2, EP, and GR, and (ii) the particle covers an 
infinite vertical distance in a finite proper  time r in cases SR2 and GR. 

11. LOCAL SPEED 

If  a freely falling particle passes a particular observer in the reference 
frame and the observer uses his standard instruments to measure the speed 
V of the particle at the instant it passes, the value he obtains will not in 
general be equal to the coordinate speed v -- (22+)2)1/2, since the standard 
clock of  the observer, which is used in the measurement  of  V, is not 
necessarily running at the same rate as his coordinate clock, which is used 
in the measurement  of  v. From the fact that the ratio of  the rate of  the 
standard clock to the rate of  the coordinate clock is equal to ~(y) ,  it can 
be shown that the relationship between the speed V, which I call the local 
speed, and the coordinate speed v is given by 

v= v/a (50) 

Since the speed V is of  more direct physical significance than the 
coordinate speed v, I list below the value of  the local speed as a function 
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of y for each of the basic assumptions discussed above: 

Assumption N: 

Assumption SRI: 

Assumption SR2: 

Assumption EP: 

Assumption GR: 

V :  v = (V2o-2y )  ~/2 (51) 

V = v = [1 - (Y0- y)-2]~/2 (52) 

V = v : [1 - To 2 eZY] 1/2 (53) 

V = v ( l + y ) - l = [ 1 - y o a ( l + y ) a ]  ~/2 (54) 

V = ve  -y  = [1 - To 2 e2y] 1/2 (55) 

where y ranges from 0 to -oo in cases N, SR1, SR2, and GR, and from 0 
to - 1  in case EP, and V ranges from 0 to 1 in cases SR1, SR2, EP, and 
GR, and from 0 to 0o in case N. Note that in all cases except the Newtonian 
case, the local speed of  the particle is consistent with the existence of an 
upper  limit of  1. 

12. D I S C U S S I O N  OF RESULTS 

The basic thesis of  this paper  is that the results obtained under assump- 
tion G R  are the correct results for the motion of a particle in a uniform 
gravitational field. In the following subsections I will use the results obtained 
earlier to justify this position, to point out some interesting aspects of  the 
motion of a particle in a uniform gravitational field, and to point out good 
and bad features of  the other approaches. 

12.1. General  Relativistic Interpretation of  the Motion 

I f  one defines a uniform gravitational field as a region of space in 
which it is possible to set up a rigid reference frame such that the spatial 
geometry based on the rod distance between observers is Euclidean, and 
the proper  acceleration of each of the observers in the frame has the same 
value, then spacetime in such a region will be curved, and it will be possible 
to coordinatize the frame such that the square of  the interval between 
neighboring events is given by equation (25). 

The above definition of a uniform gravitational field clearly agrees with 
our conception of the nature of  such a field. First, prior to the selection of 
a reference observer and the subsequent coordinatization of the frame, there 
is no way that a particular observer could distinguish his location in the 
frame from the location of any other observer in the frame. Second, if a 
particle is released from rest at any point in the frame it will accelerate, 
and consistent with the preceding result, its initial acceleration, as measured 
by the observer at the point of  release with his standard instruments, will 
be independent of  the point in the frame at which it is released and the 
time at which it is released. Finally, the fact that the above definition requires 



206 Desloge 

spacetime to be curved in a uniform gravitational field is consistent with 
the basic assumption of general relativity that gravity is a manifestation of 
the curvature of  spacetime. 

I f  one accepts the above definition of a uniform gravitational field, 
then there are a number  of  interesting features of  the motion of  a particle 
in a uniform gravitational field. First, if  a particle or photon is projected 
from a point and allowed to move freely in the field, then there is an upper  
limit to the horizontal distance the particle or photon will travel. A particle, 
for example,  which is projected in a horizontal direction with a speed Vo 
will travel a horizontal distance rcvo/2 or, with units restored, a distance 
7rCVo/2g. I f  Vo=C and g = 9 . 5  m/sec  2, this distance is approximately rr/2 
light-years. Second, if a particle is freely falling in a uniform gravitational 
field, then the particle will cover an infinite vertical distance in a finite 
proper  time. A particle, for example, which is projected in a horizontal 
direction with a speed v0 will fall an infinite vertical distance y in a 
time r=rr/2yo=--1r(1-v2)l/2/2 or, with units restored, in a time r =  
~- [1-  (Vo/C)2]]/2c/2g. I f  Vo = 0 and g = 9.5 m/sec  2, then r =  ~r/2 years. 

12.2. Newtonian Interpretation of the Motion 

The Newtonian results are based on the erroneous assumption that 
there is no upper  limit to the speed of a particle, and are included primarily 
for comparison purposes. 

When Einstein predicted that a photon would be deflected in a gravita- 
tional field, it was subsequently pointed out that the same prediction had 
been made prior to the advent of  relativity theory on the basis of  Newtonian 
mechanics. The Newtonian results are, however, ambiguous, since they 
depend on what assumption one makes for the initial speed of light. In the 
present treatment of  the motion of a photon in a uniform gravitational field 
I assumed that Vo = 1 for a photon. However,  in Newtonian mechanics there 
is no upper  limit to the speed with which a particle can move, hence other 
assumptions could have been made. Had I assumed that the photon was 
traveling with the maximum speed possible, that is, with infinite speed, 
there would have been no deflection. Irrespective of  what assumption is 
made concerning its initial value, the speed of the photon,  as well as the 
speed of any particle, in the Newtonian approach increases without limit 
as the photon falls. 

12.3. Special Relativistic Interpretation of the Motion 

I f  one attempts to treat the motion of a particle in a uniform gravitational 
field by employing the principles of  special relativity, one must decide on 
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the nature of the force which is exerted on a particle in a uniform gravita- 
tional field. If, as assumed in this paper, spacetime is curved in a uniform 
gravitational field, then the best choice will be the choice which leads to 
results most consistent with assumption GR. If the choice is between 
assumptions SR1 and SR2, then the results of this paper clearly come down 
in favor of  SR2. 

First, according to SR1, a photon will not be deflected in a uniform 
gravitational field, but according to SR2 and consistent with GR, a photon 
will be deflected. 

Second, according to SR1, a particle which is projected horizontally 
in a uniform gravitational field with an initial velocity Vo wil l  travel an 
infinite distance in the horizontal direction, but according to SR2 and 
consistent with GR, there will be a limit to the horizontal distance the 
particle will travel. 

Third, the trajectory of  a particle or a photon projected horizontally 
in a uniform gravitational field with an initial velocity Vo obtained using 
assumption SR2 will be the same as the trajectory obtained using assump- 
tion GR. 

Fourth, though the motion of the above particle as a function of  the 
coordinate time t will differ in cases SR2 and GR, the motion as a function 
of  the proper  time r of the particle will be the same in the two cases. 

12.4. Equivalence Principle Interpretation of  the Motion 

The assumption that the motion of a particle in a uniform gravitational 
field is equivalent to the motion of a particle in a uniformly accelerating 
frame is unacceptable for a number of reasons. 

First, the initial acceleration of a particle released from rest in a 
uniformly accelerating frame as measured by the observer at the point at 
which the particle is released will vary from point to point. This is incon- 
sistent with the assumption that the field is uniform. 

Second, in a uniformly accelerating frame there is a horizon which 
exhibits characteristics similar to the horizon surrounding a black hole. 
Thus, a uniformly accelerating reference frame is necessarily bounded. Such 
a boundary is inconsistent with conventional conceptions of a uniform 
gravitational field. 

13. CONCLUSION 

I have shown that if one assumes that it is possible in a uniform 
gravitational field to set up a rigid reference frame in which the spatial 
geometry based on the rod distance between points is Euclidean, and in 
which every observer has the same proper acceleration, assumptions which 
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necessarily imply that spacet ime is curved, then the basic propert ies o f  the 
f rame will be consistent with the propert ies one commonly  assumes to be 

possessed  by a uni form gravitat ional  field. 
I have investigated the mot ion  o f  a free particle relative to the above 

frame. Two facts o f  interest which are demons t ra ted  in the course o f  the 
analysis are (i) there is an upper  limit to the horizontal  distance which will 
be covered by a particle which is projected f rom a point  in a uni form 
gravitat ional  field, and (ii) a particle which is freely falling in a uni form 
gravitat ional  field will cover an infinite vertical distance in a finite p roper  
time. 

In  compar ing  the above results with results obta ined under  the assump- 
t ion that  spacet ime is flat in a uni form gravitational field, I have shown 
that  one gets results close to the above results if one assumes that  mot ion  
in a un i form gravitat ional  field is governed by the equat ions o f  special 
relativity and  the gravitat ional  mot ion  of  a particle is a consequence  o f  the 
act ion o f  a force p ropor t iona l  to the relative mass o f  the particle. All other  
assumptions,  including the assumpt ion  that  the mot ion  of  a particle in a 
uni form gravitat ional  field is equivalent to mot ion  in a uni formly accelerat- 
ing reference frame, lead to results in serious disagreement  with the above 
results. 
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